

An Annotation on Normalized Diagrams for the Existence of Two Species of a Diprotic Acid in Solution

Julia Martín^{1*} Irene Abengózar Suárez², Agustín G. Asuero²

¹Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, Seville, Spain.

²Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain.

*Corresponding author: Julia Martin, ¹Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, Seville, Spain.

ABSTRACT

The aim of this annotation is to find out in which experimental conditions a diprotic acid may be treated as a monoprotic one, the drawing of normalized diagrams helping on this context, facilitating the choice of pH ranges in which there are only two species in solution from a practical point of view.

Keywords: Diprotic acid, Monoprotic acid, normalized diagrams, number of species

INTRODUCTION

The acidity constants corresponding to the equilibria of diprotic acids may be described by

$$H_{N+1-n}R \xrightarrow{} H_{N-n}R + H \qquad (N \ge n \ge 1) \tag{1}$$

$$K_{an} = \left(H\right) \frac{\left[H_{N-n}R\right]}{\left[H_{N+1-n}R\right]} \qquad (N = 2, \quad n = 1, \text{ or } 2) \qquad (2)$$

At low enough pH values we get the equilibrium H2R=HR+H governed by K_{a1} , whereas at high enough pH values is the equilibrium HR=R+H, governed by K_{a2} , which prevails. The absorbance for a diprotic acid is related [1] to concentration by

$$A = \frac{A_0 + A_1 \frac{(H)}{K_{a2}} + A_2 \frac{(H)^2}{K_{a2}K_{a1}}}{1 + \frac{(H)}{K_{a2}} + \frac{(H)^2}{K_{a2}K_{a1}}}$$
(3)

where A_0 , A_1 and A_2 are the limit absorbance of R, HR and H_2R species, respectively. Then, when only two species H2R and HR, or HR and R are present, Eqn. (3) takes the form

$$A = \frac{A_{N-n} + A_{N+1-n} \frac{(H)}{K_{an}}}{1 + \frac{(H)}{K_{an}}}$$
(4)

Being susceptible of linear transformation [2].In order to ascertain in which conditions, Eqn. (3) is applicable we may make of normalized diagrams as follows.

NORMALIZED MOLARITY FRACTION OF THE H₂R and R Species: Normalized Diagrams

The morality fraction of the H_2R species of a dibasic acid can be expressed as

$$f_{2} = \frac{\left[H_{2}R\right]}{C_{R}} = \frac{\left[H_{2}R\right]}{\left[H_{2}R\right] + \left[HR\right] + \left[R\right]} = \frac{1}{1 + \frac{\left[HR\right]}{\left[H_{2}R\right]} + \frac{\left[R\right]}{\left[H_{2}R\right]}} = \frac{1}{1 + \frac{K_{a1}}{\left(H\right)} + \frac{K_{a1}K_{a2}}{\left(H\right)^{2}}} = \frac{1}{1 + \frac{K_{a1}}{K_{a2}} \left(\frac{K_{a2}}{\left(K\right)} + \left(\frac{K_{a2}}{\left(H\right)}\right)^{2}\right)}$$

$$= \frac{1}{1 + 10^{\Delta p K_{a}} \left(10^{-z} + 10^{-2z}\right)}$$
(5)

Where

$$\Delta pK_{a} = pK_{a2} - pK_{a1} = \log \frac{K_{a1}}{K_{a2}}$$
(6)

and

$$z = pK_{a2} - pH = \log\frac{(H)}{K_{a2}} \tag{7}$$

The molarity fraction of R species can be indeed expressed as

$$f_{0} = \frac{\begin{bmatrix} R \end{bmatrix}}{C_{R}} = \frac{\begin{bmatrix} R \end{bmatrix}}{\begin{bmatrix} R \end{bmatrix} + \begin{bmatrix} HR \end{bmatrix} + \begin{bmatrix} HR \end{bmatrix} + \begin{bmatrix} H_{2}R \end{bmatrix}} = \frac{1}{1 + \begin{bmatrix} HR \end{bmatrix} + \begin{bmatrix} H_{2}R \end{bmatrix}} = \frac{1}{1 + \frac{\begin{bmatrix} HR \end{bmatrix}}{K_{2}} + \frac{\begin{bmatrix} HR \end{bmatrix}}{\begin{bmatrix} R \end{bmatrix}}} = \frac{1}{1 + \frac{\begin{pmatrix} H \end{pmatrix}}{K_{a2}} + \frac{\begin{pmatrix} H \end{pmatrix}^{2}}{K_{a2}K_{a1}}} = \frac{1}{1 + \frac{K_{a1}}{K_{a2}} \left(\frac{\begin{pmatrix} H \end{pmatrix}}{K_{a1}} + \left(\frac{\begin{pmatrix} H \end{pmatrix}}{K_{a1}}\right)^{2}\right)} = \frac{1}{1 + 10^{\Delta \rho K_{a}} \left(10^{-\gamma} + 10^{-2\gamma}\right)}$$
(8)

being in this case

$$y = pH - pK_{a1} = \log\frac{K_{a1}}{(H)}$$
(9)

Taking reciprocals in Eqn. (5), subtracting 1, we get

$$\frac{1}{f_2} - 1 = 10^{\Delta p K_a} \left(10^{-z} + 10^{-2z} \right)$$
(10)

which may be ordered as a second degree equation

$$10^{-2z} + 10^{z} - \frac{\left(1 / f_{2} - 1\right)}{10^{\Delta p K_{a}}} = 0$$
(11)

Solving Eqn. (11) for fixed values of f_2 and different values of ΔpK_a we have

$$z = pK_{a2} - pH = -\log\left(\frac{-1 + \sqrt{1 + 4\left(\frac{1}{f_2} - 1\right)10^{-\Delta pK_a}}}{2}\right) (12)$$

Values of pK_{a2} -pH=z (or pH- $pK_{a1}=y$) for different values of $\Delta pK_a=pK_{a2}$ - pK_{a1} and f_2 or log f_2 (or f_0 and log f_0) are depicted in Figures 1 and 2, respectively. Figure 3 shows pK_{a2} -pH=z (or pH- $pK_{a1}=y$) values against ΔpK_a for varying f_2 (or f_0) values.

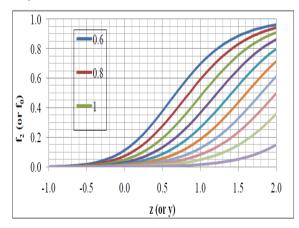


Figure 1. Molar fractions of f_2 (or f_0) as a function of $z=pK_{a2}$ -pH (or y=pH-pK_{a1}) at varying values of ΔpKa .

The family of curves $f_2=F(z, \Delta pK_a)$ permits the construction of the distribution diagrams of the different species of a diprotic acid. In fact: i) once ΔpK_a is known, one can read directly from the diagram the value of f_2 for each value of x; ii) as $z+y=\Delta pK_a$

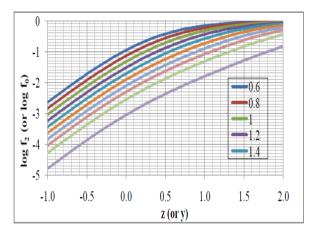


Figure2. $logf_2$ (or $log f_0$) values as a function of $z=pK_{a2}$ -pH (or y=pH-pK_{a1}) at varying ΔpK_a values.

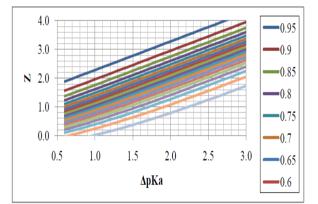


Figure3. Values of $z=pK_{a2}-pH$ (or $y=pH-pK_{a1}$) as a function of ΔpKa at varying molar fractions f_2 (or f_0) values

Table 1 shows the values of z (or y) against ΔpK_a for given low values of f_2 (or f_0). In cases in which the contribution of the H_2R (or R) species is valueless, Eqns. (4) is valid, being possible in consequence to apply slope-intercept procedures to the evaluation of acidity constants from spectrophotometric measurements. The range of pH usable in the evaluation of pK_{a1} and pK_{a2} depends both on the value of ΔpK_a and the restriction imposed to the value of f_2 (and f_0).

Therefore, in order to evaluate the pK_{a1} by the singular straight line (logarithmic) method [*R*] should be close to cero ($f_0 \le 0.01$). The interval of pH usable depends on the value of ΔpK_a . For well-separated acidity constants this *pH* range is $pK_{an} \pm 1$ (n=1, 2) because the quotient [$H_{N-n}R$]/[$H_{N+1-n}R$] (N=2) would be varied between 10

and 0.1. In the limit case [3] K_{a1}/K_{a2} =4, and then ΔpK_a = 0.6 and the range of pH usable (f_2 or $f_0 \approx$ 0.01, respectively) is (pK_{a1} - 1.0, pK_{a1} - 0.65) for

the evaluation of the first acidity constant, and $(pK_{a2}+0.65, pK_{a2}+1)$ for the second.

$f_2 (\operatorname{or} f_0)$				
ДрКа	0.01000	0.005	0.0040	0.0025
0.6	-0.6543	-0.7964	-0.9707	-0.9788
0.8	-0.5431	-0.6881	-0.7636	-0.8732
1.0	-0.4291	-0.5777	-0.6547	-0.7661
1.2	-0.3115	-0.4646	-0.5435	-0.6573
1.4	-0.1896	-0.3481	-0.4294	-0.5461
1.6	-0.0623	-0.2276	-0.3118	-0.4322
1.8	-0.0712	-0.1021	-0.1899	-0.3147
2.0	-0.2121	0.0294	-0.0627	-0.1929
2.2	-0.3613	0.1679	0.0708	-0.0658
2.4	-0.5192	0.3144	0.2117	0.0676
2.6	-0.6858	0.4696	0.3609	0.2083
2.8	0.8605	0.6335	0.5187	0.3572
3.0	1.0421	0.8059	0.6853	0.5148

Table1.*Values of z* (or y) for different values of ΔpKa and f_2 (or f_0)

FINAL COMMENTS

The family of curves $f_2 = F(z, \Delta pKa)$ where f_2 is the mole fraction of H_2R species, $\Delta pK_a = pK_{a2}$ pK_{a1} , and $z = pK_{a2}$ -pH allows the construction of the normalized distribution diagrams of the H_2R species. In the same way, the family of curves f_0 $= F(y, \Delta pK_a)$ where f_0 is the mole fraction of Rspecies, and $y = pH-pK_{a1}$ allows the construction of the normalized distribution diagrams of the Rspecie. This allows us to check when the contribution of H_2R or R species can be neglected.

REFERENCES

- A.G.Asuero, J.L. Jimenez-Trillo, M.J.Navas, "Mathematical treatment of absorbance versus pH graphs of polybasic acids,"*Talanta*, 33 (11), 1986,929-934.
- [2] M. Meloun, J. Havel, E.Högfeldt, "Computation of Solution Equilibria: a guide to methods in potentiometry, extraction and spectrophotometry," Chichester: Ellis Horwood, 1988.
- [3] A.G. Asuero, "Buffer capacity of polyprotic acids: first derivative of the buffer capacity and pKa values of single and overlapping equilibria,"*Critical Reviews in Analytical Chemistry*, 37 (4), 2007, 269-301.